
Discriminatively Trained Features Using fMPE for Multi-Stream Audio-Visual
Speech Recognition

Jing Huang and Daniel Povey

IBM T.J. Watson Research Center
Yorktown Heights, NY, USA
{jghg,dpovey}@us.ibm.com

Abstract

fMPE is a recently introduced discriminative training tech-
nique that uses the Minimum Phone Error (MPE) discrimina-
tive criterion to train a feature-level transformation. In this pa-
per we investigate fMPE trained audio/visual features for multi-
stream HMM-based audio-visual speech recognition. A flex-
ible, layer-based implementation of fMPE allows us to com-
bine the the visual information with the audio stream using the
discriminative traning process, and dispense with the multiple
stream approach. Experiments are reported on the IBM infrared
headset audio-visual database. On average of 20-speaker 1 hour
speaker independent test data, the fMPE trained acoustic fea-
tures achieve 33% relative gain. Adding video layers on top
of audio layers gives additional 10% gain over fMPE trained
features from the audio stream alone. The fMPE trained visual
features achieve 14% relative gain, while the decision fusion of
audio/visual streams with fMPE trained features achieves 29%
relative gain. However, fMPE trained models do not improve
over the original models on the mismatched noisy test data.

1. Introduction
Recently audio-visual speech recognition (AVSR) has attracted
significant interest as a means of improving performance and
robustness over audio-only speech recognition (ASR) [1, 2, 3],
especially in real-life applications [4, 5]. The most successful
AVSR systems extract visual features from the facial region of
interest and combine them with acoustic features using multi-
stream HMMs. It has been demonstrated that multi-stream de-
cision fusion attains significant improvement in recognition ac-
curacy over the single-stream based fusion methods [6].

Discriminative training techniques for HMM parameters
can be naturally adapted to multi-stream HMM based AVSR
system. Common discriminative training techniques such as
MMI and MPE [7] have shown to give improvement on vari-
ous tasks of ASR. Instead of discriminative training of HMM
parameters, Li and Stern recently applied a discriminative-like
normalized acoustic likelihood criterion to parallel feature gen-
eration [8]. The feature transforms of parallel data streams are
estimated at the same time to maximize the normalized acoustic
likelihood.

fMPE, introduced recently in [9], is also a feature space
transform estimated discriminatively. It uses the Minimum
Phone Error (MPE) discriminative criterion [7] to train a
feature-level transformation. Unlike MPE training on HMM
parameters, fMPE transforms training data with a kernel-like
method and optimizes on large number of parameters compa-
rable to the size of the acoustic model. Despite the large num-
ber of parameters, fMPE is robust to over-training. The fMPE

transformation matrix projects posteriors of Gaussians to a fea-
ture space, and then adds the projected features to the original
acoustic features. This matrix is trained from a zero start using a
linear method. The improvement from fMPE is similar to MPE,
around 10% relative [9] or more [10], and can be combined with
model-space discriminative training such as MPE.

In this paper we investigate how fMPE trained features
improve the performance of multi-stream HMM-based audio-
visual speech recognition. In addition to estimating fMPE trans-
forms individually for audio and visual streams, we take advan-
tage of the flexible layer-based implementation of fMPE [10]
to add visual information to the audio information using the
fMPE training process. The resulting fMPE trained audio sys-
tem achieves 10% additional gain over the fMPE trained audio
system from audio information alone. Since visual information
is noise invariant and added into the fMPE training for audio,
the resulting system even improve a little on the mismatched
noisy data compared to the baseline, while the fMPE trained au-
dio system from audio alone degrades on the mismatched noisy
data compared to the ML baseline.

The paper is organized as follows: the multi-stream HMM
for AVSR is briefly reviewed in Section 2. Section 3 reviews
fMPE first and then describes how to apply fMPE on combined
visual and audio layers. The experimental setup and results are
reported in Section 4, and conclusions are drawn in Section 5.

2. Multi-stream AVSR system
Our multi-stream HMM based AVSR system uses appearance-
based visual features and decision fusion for the audio and vi-
sual streams. The visual features are extracted from the region
of interest (ROI). We first estimate the location of the ROI,
which contains the area around the speaker’s mouth (see Sec-
tion 4.1). Following ROI extraction, the visual features are com-
puted by applying a two-dimensional separable DCT to the sub-
image defined by the ROI, and retaining the top 100 coefficients
with respect to energy. The resulting vectors then go though a
pipeline consisting of intra-frame linear discriminant analysis
(LDA) and maximum likelihood linear transform (MLLT), tem-
poral interpolation, and feature mean normalization, producing
a 30-dimensional feature stream at 100Hz. To account for inter-
frame dynamics, fifteen consecutive frames in the stream are
joined and subject to another LDA/MLLT step to give the final
visual feature vectors with 41 dimensions [5].

In parallel to the visual feature extraction, audio features are
also obtained, time synchronously, at 100 Hz. First, 24 mel fre-
quency cepstral coefficients of the speech signal are computed
over a sliding window of 25 msec, and are mean normalized
to provide static features. Then, nine consecutive such frames

are concatenated and projected by means of LDA/MLLT onto a
60-dimensional space, producing dynamic audio features.

In the multi-stream HMM based decision fusion approach,
the single-modality observations are assumed to be gener-
ated by audio-only and visual-only HMMs of identical topolo-
gies with class-conditional emission probabilities Pa(oa,t) and
Pv(ov,t), respectively. Both are modeled as mixtures of Gaus-
sian densities. Based on the assumption that audio and vi-
sual streams are independent, we compute the joint probability
Pav(oav,t) as follows [11]:

Pav(oav,t) = Pa(oa,t)λ × Pv(ov,t)1−λ (1)

Exponent λ is used to appropriately weight the contribution
of each stream, depending on the “relative confidence” on each
modality. Exponents can be fixed or time dependent [12] (we
use fixed weights). The use of stream exponents are critical
to the robust operation of an AVSR system. Failure of either
channel can be expected in any practical application, but the
visual channel is much more prone to failure.

3. fMPE for audio-visual streams
We first briefly review the fMPE training process. Then we
discuss how to use fMPE to directly add visual information to
the audio features.

fMPE is a form of discriminative training that optimizes the
same objective function as MPE, but does so by transforming
the feature vectors. The MPE objective function is the aver-
age of the transcription accuracies of all possible sentences s,
weighted by the probability of s given the model:

FMPE(λ) =
PR

r=1

P

s
P κ

λ (s|O∇)A(∫ , ∫∇) (2)

where P κ
λ (s|O∇) is defined as the scaled posterior sentence

probability pλ(O∇|∫)κP(∫)κ

P

u
pλ(O∇|u)κP(u)κ of the hypothesized sentence

s, where λ is the model parameters and O∇ the r’th sequence
of acoustic data. The function A(s, sr) is a “raw phone accu-
racy” of s given sr, which equals the number of phones in the
reference transcription sr for file r, minus the number of phone
errors.

Normally [7] the MPE objective function is used to train the
acoustic model (means and variances); in fMPE it is use to train
a feature transformation. In the original formulation of fMPE,
the transformation is applied as follows:

yt = xt + Mht, (3)

where xt are the original features on time t and yt the modified
features. ht are high dimensional features calculated at each
frame t, which may be a function of the original features xt.
These are projected down with the matrix M. If very high di-
mensions are used, it is important that the features ht are sparse,
i.e. very few of the elements of the vector are nonzero on each
time frame. This means that very few of the rows of M have
to be accessed on each time frame. The reason for adding the
original features xt is that it solves the problem of initializing
the training algorithm with something reasonable. The matrix
M can be trained from a zero start.

3.1. High-dimensional feature generation

The first stage of fMPE is to transform the features into a very
high dimensional space. This is done as follows: a set of Gaus-
sians is created by likelihood-based clustering of the Gaussians
in the acoustic model to an appropriate size (300 in experiments

reported here). On each frame, the Gaussian likelihoods are
evaluated with no priors and a vector of posteriors. For the
fMPE setup used here, the posteriors are augmented with the
offset of the feature vector from each Gaussian’s mean, multi-
plied by that Gaussian’s posterior, to give a dimension in this
case of 300(d + 1), where d is the feature dimension. This is
described more exactly in [10]. A key feature is that the vec-
tor ht is sparse, i.e. only certain elements on each time t differ
significantly from zero; this greatly speeds up the computation.

3.2. Acoustic context expansion

The vector is further expanded with left and right acoustic con-
text. The following is a typical configuration used: If the central
(current) frame is at position 0, vectors are appended which are
the posterior vector at positions 1, and the average of the poste-
rior vector at positions (2 and 3), (4 and 5) and (6, 7 and 8), and
the same to the left (-1 etc), to give a vector nine times as large
as the original one. This expansion process can be viewed as a
matrix operation which itself is trained; see [10] for details.

3.3. Training the matrix

The matrix is trained by linear methods, because in such high
dimensions accumulating squared statistics would be impracti-
cal. The training process is basically gradient descent, but var-
ious heuristics are used to give suitable learning rates for each
matrix element, as described in [9, 10]. After each iteration of
training the matrix, the recognition HMM is retrained for one
iteration using normal E-M. However the Gaussians used to ob-
tain the posteriors are kept constant. The process of obtaining
the differential to update the matrix requires two passes over
the data similar to normal discriminative training; the first pass
is necessary to obtain differentials of the MPE criterion w.r.t.
the HMM parameters which is used to give an extra term in the
differential w.r.t. the matrix, a term which reflects the fact that
the recognition HMM is going to be trained (with ML) using
the same features.

3.4. Layered implementation

As described in [10], the calculation is now viewed as multi-
ple layers of transformation which have a normalized interface.
Instead of explicitly constructing the spliced vector ht of size
9×300×(d+1), we instead construct the un-spliced ht of size
300×(d+1), project it to a dimension of 9d and then project to
dimension d with a specialized form of frame splicing (which,
to describe it briefly accomplishes projection in time but not in
feature space).

Figure 3.4(a) shows the feature processing stages involved
in the baseline fMPE setup. The layers with storage indicated
in the diagram (a matrix “M”) have trainable parameters; these
are trained with a form of gradient descent. Some layers such
as the layer that performs addition propagate the differentials
back but have no trainable parameters. The layer that calculates
the Gaussian posteriors is not trainable. Layers with very high
dimensional outputs store their output with a sparse representa-
tion.

Figure 3.4(b) shows the audio-visual version of the fMPE
training setup. The basic modules involved are the same, but
some of them now have two instances and there is one more
addition layer. The baseline features which are added to are the
audio features, but both audio and video features are used to
train offsets, which are simply added to each other. The layer-
based setup means that no extra code was required to cope with

Compute Gaussian posteriors

 (dimension = 300 * (d+1))
 & mean offsets

Project to dimension
 9*d M

Input features
(dimension=d)

Add

M
Project with splicing
 to dimension d

(a) Baseline layer-based feature transformation setup

Project to dimension
 9*d M

Compute Gaussian posteriors

 (dimension = 300 * (d+1))
 & mean offsets

Project to dimension
 9*d M

Visual features
(dimension=e)

Compute Gaussian posteriors
 & mean offsets
 (dimension = 300 * (e+1))

Add

(dimension=d)
Audio features

Add

M MProject with splicing
 to dimension d

Project with splicing
 to dimension d

(b) Audio-visual layer-based feature transformation setup

the feature combination.

4. Experimental setup and results
4.1. The infrared headset audio-visual database

Experiments are conducted on the audio-visual database col-
lected with the IBM infrared headset [5]. The infrared headset
is specially designed equipment that captures the video of the
speaker’s mouth region, independently of the speaker’s move-
ment and head pose. It reduces environmental lighting effect
on captured images, allowing good visibility of the mouth ROI
even in a dark room. Since the headset consistently focuses on
the desired mouth region, face tracking is no longer required.
Eliminating this step improves the visual front end robustness
and reduces CPU requirements by approximately 40% [13].

The ROI extraction on headset captured videos is based on
tracking the two mouth corners of the recorded subject. This
corrects for slight positioning errors, boom rotation, and rescal-
ing of the physical mouth size. Extracting the two mouth cor-
ners turns out to be fairly simple in the headset scenario, since
it is assumed that the camera is already aimed nearly directly at
the mouth. Because the types of features seen in the captured
images are tightly constrained (i.e., no confusing background
objects are expected in the scene), the algorithms can use very
weak models and hence run quickly. The first step of the mouth

finding algorithm estimates the position of the mouth in the im-
age. The second step models the mouth as a dark slit and at-
tempts to determine its corners. The final step is to output the
normalized mouth image. The result is a 64×64 pixel ROI with
an aspect ratio of about 1.7 covering the mouth. Details of the
algorithms can be found in [5].

4.2. Experimental setup

Our AVSR system is built on 22kHz audio and 720x480 pixel
resolution at 30 Hz video. A total of 107 subjects uttering ap-
proximately 35 random length connected digit sequences. We
split 107 speakers in our infrared headset data into a training set
and a testing set: 87 speakers are used for training, and the re-
maining 20 speakers are used for testing, and there is no overlap
speakers in training and testing sets. The training data has about
4 hours of speech, and the test data has around 1 hour of speech.
Both training and testing data have an average SNR of 20dB. In
addition to this clean test data which matches the training data,
another noisy test set is built by artificially corrupting the test
set with additive “speech babble” noise resulting in an average
SNR of 7dB. Recognition results are presented on both matched
and noisy test sets.

The recognition system uses three-state, left-to-right pho-
netic HMMs with 159 context-dependent states (the context is
cross-word, spanning up to 5 phones to either side) and 2, 600
Gaussian mixture components with diagonal covariances. At
the decision fusion step, we keep the stream weights fixed, 0.7
for the audio stream, and 0.3 for the video stream. Since we
don’t have an extra validation test set, we fix the fMPE iteration
number to 4 to avoid tuning the results on the test set.

To show the effectiveness of fMPE on multi-stream HMMs,
we also present the fMPE results on individual single stream,
audio-only, video+audio, and visual-only. The results are
presented as word error rate (WER) for audio-only (A),
video+audio combined with fMPE (V+A), visual-only (V) and
multi-stream audio-visual (AV) recognition.

4.3. Results

Results are given before and after fMPE in Tables 1 and 2. Ta-
ble 1 gives results on the single-stream HMMs; Table 2 gives
results on multi-stream HMMs, i.e. combining as streams the
individual systems shown in Table 1. The overall result seems
to be that fMPE does very well on the conditions for which
it was trained, i.e. in clean testing data, but the introduction of
speech babble seems to generally eliminate or reverse the fMPE
improvements.

The fMPE trained systems still give an improvement when
tested in a multi-stream context (Table 2): the best result is com-
bining as streams the fMPE trained audio and visual systems
(AV) at 1.0%, which is a 29% relative improvement over the
best non-fMPE system at 1.4% (AV). The combination of the
(V+A) system which adds the visual information to an audio
baseline using fMPE, with a visual (V) fMPE trained system
((V+A)V in Table 2) does not improve the (A+V) system much:
1.2% goes to 1.1%. But this is not surprising as the (A+V) sys-
tem already contains the visual information.

One interesting pair of results to compare is the ML-trained
AV result in Table 2, which uses streams to combine the two
sources of information, at 1.4%, with the fMPE trained sin-
gle stream (V+A) system in Table 1, at 1.2%. This means that
fMPE can do a better job at combining the two sources of in-
formation than the multi-stream approach. However, we can do

Match Noisy
A V+A V A V+A

baseline 2.1 2.1 36.0 15.0 15.0
fMPE 1.4 1.2 30.9 18.7 14.6

rel. improvement 33% 43% 14% -25% 3%

Table 1: Comparison of single-stream fMPE results on audio-
only, video+audio combined with fMPE, and visual-only speech
recognition

Match Noisy
AV (V+A)V AV (V+A)V

baseline 1.4 1.4 8.8 8.8
fMPE 1.0 1.1 9.9 9.4

rel. improvement 29% 21% -13% -7%

Table 2: Comparison of multi-stream fMPE results on audio-
visual, and (video+audio)-visual speech recognition. XY means
X and Y combined as streams

better (1.0%) by training two separate fMPE systems and com-
bining them using streams (AV in Table 2).

5. Conclusions

In this paper, we investigated the effect of fMPE training for
digit recognition using audio and video features. fMPE training
gave large improvements for both audio and video features, and
gave even larger improvements for a system based on audio fea-
tures when features calculated from the video stream was made
available to the fMPE training process. Larger gains would have
been possible from doing discriminative training (e.g. MPE) on
top of the fMPE features, but we did not yet investigate this.
We also intend to investigate combination with adaptation tech-
niques such as fMLLR [14], which might increase the robust-
ness of the fMPE trained system.

It was disappointing that the large gains from fMPE did not
carry over to the mismatched test condition we investigated (ad-
ditive speech babble), and to testing in a multi-stream context.
This is surprising, especially since it was found in [15] that dis-
criminative training works essentially as well across tasks as it
does within tasks. Further investigation is necessary to deter-
mine whether is is a property of fMPE, of the specific fMPE
features used, or whether it is an effect specific to this task. The
strong confounding effect of the speech babble for this particu-
lar task has been observed in other conditions and it is probably
dangerous to generalize too strongly from it. As regards the rel-
atively small improvements of fMPE in the multi-stream case,
it is perfectly possible in principle to train the fMPE transform
when embedded in the multi-stream framework and this might
give better results; however, this was not done as the current
code does not support it.

It is encouraging that fMPE provides a way to take advan-
tage of complementary information (visual features) without
having to resort to a multi-stream approach. This could po-
tentially lead to a more efficient system as we have to calculate
fewer likelihoods in the acoustic model. It might also prove use-
ful in an audio-only context, for example to integrate different
types of features.

6. References
[1] Janin, A., Ellis, D., and Morgan, N., “Multi-stream speech

recognition: Ready for prime time?”, Proc. Europ. Conf.
Speech Technol., pp. 591–594, 1999.

[2] Dupont, S. and Luettin, J., “Audio-visual speech modeling
for continuous speech recognition,” IEEE Trans. Multime-
dia, 2(3): 141–151, 2000.

[3] Potamianos, G., Neti, C., Gravier, G., Garg, A., and Se-
nior, A.W., “Recent advances in the automatic recognition
of audio-visual speech,” Proc. IEEE, 91(9): 1306–1326,
2003.

[4] G. Potamianos and C. Neti, “Audio-visual speech recog-
nition in challenging environments,” Europ. Conf. Speech
Commun. Technol., 2003.

[5] J. Huang, G. Potamianos, J. Connell and C. Neti, “Audio-
Visual Speech Recognition Using an Infrared Headset,”
Speech Communication, Dec. 2004.

[6] E. Marcheret, S. Chu, V. Goel, G. Potamianos, “Efficient
Likelihood Computation in Multi-Stream HMM Based
Audio-Visual Speech Recognition,” Int. Conf. Speech and
Language Processing, 2004.

[7] D. Povey and P. C. Woodland, “Minimum Phone Error
and I-smoothing for Improved Discriminative Training,”
ICASSP, 2002.

[8] L. Xiang and R. M. Stern, “Parallel Feature Generation
Based on Maximizing Normalized Acoustic Likelihood,”
ICSLP, 2004.

[9] D. Povey, B. Kingsbury, L. Mangu, G. Saon, H. Soltau,
G. Zweig, “fMPE: Discriminatively trained features for
speech recognition,” ICASSP, 2005.

[10] D. Povey, “Improvements to fMPE for discriminative
training of features,” submitted to Interspeech 2005.

[11] S. Dupont and J. Luettin, “Audio-visual speech modeling
for continuous speech recognition,” IEEE Trans. Multime-
dia, 2(3):141–151, 2000.

[12] A. Garg, G. Potamianos, C. Neti, T. Huang, “Frame-
Dependent Multi-Stream Reliability Indicators for Audio-
Visual Speech Recognition,” Int. Conf. Acoustic Speech
and Signal Processing, 2003.

[13] J. Connell, N. Haas, E. Marcheret, C. Neti, G. Potami-
anos, S. Velipasalar, “A Real-Time Prototype for Small-
Vocabulary Audio-Visual ASR,” IEEE Int. Conf. on Mul-
timedia & Expo, 2003.

[14] J. Huang, E. Marcheret, K. Visweswariah, “Rapid Fea-
ture Space Speaker Adaptation for Multi-Stream HMM-
based Audio-Visual Speech Recognition,” IEEE Int. Conf.
on Multimedia & Expo, 2005, to appear.

[15] R. Cordoba, P.C. Woodland & M.J.F. Gales, “Improving
cross-task performance using MMI training,” Int. Conf.
Acoustic Speech and Signal Processing, 2002.

