
Speech REcognition

- a practical guide

In this lecture:
•Overview of the course
•GEtting started
•Speech feature extraction

Overview of
the course

Known
Unknowns

Unknown
Unknowns

Known
Knowns

Unknown
Unknowns

Speech
Recognition

Now

Known
Unknowns

Known
Knowns

Known
Unknowns

Unknown
Unknowns

Speech
Recognition

After thes
e

lectures

Known
Knowns

Known
Knowns

Known
Unknowns

Unknown
Unknowns

Speech
Recognition

After furt
her

study

Structure of this
lecture series

A series of 45-minute lectures

Each one will combine:

Some of the theory of speech recognition

Practical examples with the Kaldi toolkit

Note: various toolkits exist.

I believe Kaldi is the best one... but I
wrote much of it.

Note: this was released ~1 year ago.

speech recognition toolkit

Prerequisites
It will be helpful if you have encountered:

Statistical models

UNIX shell scripts

C++

If a section requires background knowledge
of some kind, we will suggest search terms.

e.g.: bash scripting

Machine
Learning

Speech Processing

Natural Language
Processing

Signal Processing

What this course is about

What this course is about

Speech Processing

Automatic Speech
Recognition (ASR)

Text to
Speech

Dialog
Systems/UI

Speech signal
processing

Language
Modeling

Speaker
Recognition

What is Speech Recognition?

She asked for ...

Wavefo
rm

Text

How we do it
Given “training data” from the target
language, we’ll train a statistical model of
speech.

This model will assign probabilities to (some
sentence) producing (some waveform)

Given a waveform, we can work out the
most likely sentence.

This won’t be guaranteed accurate.

statistical model

Data resources required
A labeled corpus

i.e. a collection of recordings of speech

a record of what was spoken for each one

A pronouncing dictionary, a.k.a. “lexicon”

Says, for each word, what the sequence of
“phonemes” (speech sounds) is.

Not necessary in phonetically written languages

Possibly some extra text to train “language model”

Finding speech data
A lot of speech resources are available from
the Linguistic Data Consortium (LDC)

Also Appen, ELRA

None of this is for free. Typically one to
several thousand dollars for LDC databases

Not a download. It’s FedEx.

Some lexicons available for free (e.g. CMUDict)

A limited amount of free speech data is
available. gutenberg audio

Other Resources
To do large-scale speech training (on hundreds of
hours of data), would also need:

A cluster of machines (at least 20 or so cores in
total, preferably more), running e.g. GridEngine

A few hundred gigabytes of space on a fast disk
(e.g. NFS mounted)

Fast local network

What you will be able to do
If you listen to and understand this lecture
series, you should be able to:

build and (somewhat) understand a command-
line speech recognition system

You will not be able to:

build a dialog system or speech user interface

get perfect accuracy (50-95% is normal
range, except for yes/no/digit type dialogs)

How to follow these lectures

I will be describing how to run the Kaldi
software

Better to watch or attend the lecture without
taking notes

Slides and video will be made available (follow
links from kaldi.sf.net)

For running the examples, do it after the
lecture (get the commands from the slides)

Getting started

What you need
Some kind of UNIX-based system (Linux, Mac,
cygwin should all work).

Plenty of memory (e.g. 5G), disk space (e.g.
20G).

Fast Web connection, or LDC data on your
system.

You may need to install some packages

e.g. subversion (svn), wget, g++

System-dependent: figure it out yourself or
ask your sysadmin.

Installing Kaldi
$ ## see instructions at http://kaldi.sf.net
$ ## first cd to somewhere with a lot of space.
$ svn co https://kaldi.svn.sourceforge.net/svnroot/kaldi/trunk kaldi-trunk
$ cd kaldi-trunk/tools
$./install.sh ## Installs some stuff Kaldi depends on... takes a while
$ cd ../src
$./configure
$ make -j 8 ## -j 8 makes with 8 jobs in parallel; should not
$ ## exceed number of cores on your machine.

If that worked, congratulations.

Otherwise, try to figure out what went wrong.

Look carefully at the output of steps that
failed.

How to get help

If any step in this course doesn’t run..

Check for obvious stuff like programs that
are invoked but not installed.

Ask at kaldi-developers@lists.sourceforge.net

Please, no non-Kaldi questions, e.g. how do I
change directories, how do I install awk.

If you fix something, contact us.

What we installed (1)
$ cd ~/kaldi-trunk # assuming it was in your homedir
$ ls
COPYING INSTALL README.txt egs misc src tools windows
$ # Note: “tools/”, “src/” and “egs/” are most important.
$ ls tools/
ATLAS!! interpolatedwrite-5.60.02.patch openfst.patch
CLAPACK_include irstlm! ! ! INSTALL! ! atlas3.8.3.tar.gz
sctk-2.4.0 openfst! ! ! sctk-2.4.0-20091110-0958.tar.bz2
install.sh! openfst-1.2.10!! sph2pipe_v2.5
install_atlas.sh openfst-1.2.10.tar.gz! sph2pipe_v2.5.tar.gz

Various tools Kaldi depends on.

OpenFst: Weighted Finite State Transducer library

ATLAS/CLAPACK: standard linear algebra libraries

“scoring”, audio format conversion tools....

What we installed (2)
$ cd ~/kaldi-trunk # assuming it was in your homedir
$ cd src
$ ls
Doxyfile!configure! fstext! ! lat! ! nnet_cpu!tied
INSTALL! ! decoder! ! gmm! ! latbin! ! nnetbin! ! tiedbin
Makefile!doc! ! gmmbin! ! lm!! nnetbin_cpu!transform
NOTES!! feat! ! hmm! ! machine-type! optimization! tree
TODO! ! featbin! ! itf! ! makefiles! rnn! ! util
base! ! fgmmbin! ! kaldi.mk!matrix! ! sgmm
bin! ! fstbin! ! kaldi.mk.bak! nnet! ! sgmmbin

Mostly directories containing code.

Those ending in bin/ contain Kaldi programs

There are a large number of programs, each
with a fairly simple function.

Running the examples

There are example scripts for various data-sets.

We’ll use Resource Management (smallest one).

Very easy task: clean, planned speech, small
vocabulary. (Spoken commands to computer).

$ cd ~/kaldi-trunk # assuming it was in your homedir
$ cd egs
$ ls
README.txt gp!rm swbd timit wsj
$ cd rm
$ ls
README.txt s1!s2 s3 s4
$ cd s3 # The s3 example scripts are the most normal one.
$ ls
RESULTS conf data exp local path.sh run.sh scripts steps

Finding the data

See if you have this data on your system

It’s $1000 from LDC if non-member.

Look for directory containing subdirs:

rm1_audio1 rm1_audio2! rm2_audio

$ cd ~/kaldi-trunk/egs/rm
$ cat README.txt
About the Resource Management corpus:
 Clean speech in a medium-vocabulary task consisting
 of commands to a (presumably imaginary) computer system. About 3
 hours of training data.
 Available from the LDC as catalog number LDC93S3A (it may be
 possible to get the same data using combinations of other catalog
 numbers, but this is the one we used).

If you don’t have the data
If your institution is not an LDC member and
doesn’t want to pay for the data:

you can use the scripts in rm/s4

Uses precomputed features derived from a
subset of the RM data

Will be downloaded from the Internet.

Thanks to Vassil Panayotov for contributing this recipe.

Looking at the data

Note: .wav files are not really .wav, they are .sph

Use tools/sph2pipe_v2.5/sph2pipe to convert

$ find /export/corpora5/LDC/LDC93S3A/rm_comp | head
/export/corpora5/LDC/LDC93S3A/rm_comp
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2/rm2
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2/rm2/ex_train
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2/rm2/ex_train/lpn0_7
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2/rm2/ex_train/lpn0_7/tc1125.wav
/export/corpora5/LDC/LDC93S3A/rm_comp/rm2_audio/3-2.2/rm2/ex_train/lpn0_7/tc0966.wav
$ less /export/corpora5/LDC/LDC93S3A/rm_comp/rm1_audio1/rm1/doc/al_sents.txt
; al_sents.txt - updated 09/20/89
<snip>
What is the constellation's gross displacement in long tons? (SR001)
Is Ranger's earliest CASREP rated worse than hers? (SR002)
Show me all alerts. (SR003)
Give Bainbridge's CASREPs from the last 7 months. (SR004)
Show the Enterprise's home port. (SR005)
Draw Texas's last 3 H.F.D.F. sensor posits. (SR006)

sphere format

The word-pair grammar

The RM database comes with a “word-pair grammar”

For the other Kaldi examples, we use statistical
language models.

$ less /export/corpora5/LDC/LDC93S3A/rm_comp/rm1_audio1/rm1/doc/wp_gram.txt
/*
**
 * COPYRIGHT 1987. BBN LABORATORIES, INCORPORATED
 *
 * ALL RIGHTS RESERVED

 * File: patts_snor_word_pair.text
 *
 * This file contains a specification for the 'word-pair' grammar developed
 * at BBN.
 * The grammar allows all two word sequences (bigrams) possible in the DARPA
 * continuous speech resource management database as defined by the sentence
 * pattern grammar.
...

n-gram model

Bayes’ rule and ASR

Here, S is the sequence of words, P(S) is language
model, e.g. n-gram model or probabilistic grammar.

p(audio | S) is a sentence-dependent statistical model
of audio production, trained from data.

Given a test utterance, we pick S to maximize
P(S | audio). I.e. the most likely sentence.

Note: p(audio) is a normalizer that doesn’t matter.

P(S | audio) =
p(audio | S) P(S)

p(audio) Note:
p() = likelihood

P() = probability

Preparing the data

Putting data in form that Kaldi scripts understand.

data/lang contains language-specific stuff (also see
data/lang_test which contains the grammar too).

data/train contains training data (data/test_feb89
etc. have same format)

$ cd ~/kaldi-trunk/egs/rm/s3
$ ## we’re running the steps from run.sh ##
$ local/rm_data_prep.sh /export/corpora5/LDC/LDC93S3A/rm_comp
$ local/rm_format_data.sh
$ ls data
lang lang_test local! test_feb89 test_feb91! test_mar87 test_oct87
test_oct89 test_sep92! train

Language-specific stuff
$ head -5 data/lang/phones.txt
<eps>!0
aa!1
ae!2
ah!3
ao!4
aw!5
$ head -2 data/lang/words.txt
head -4 data/lang/words.txt
<eps>!0
A! 1
A42128! 2
AAW! 3
$ cat data/lang/silphones.csl
48
$ ## Note: just one silence phone in this setup.

*.txt are symbol tables in OpenFst format

Map between strings and ints; Kaldi code uses ints.

The lexicon
$ fstprint --isymbols=data/lang/phones.txt --osymbols=data/lang/words.txt
data/lang/L.fst | head
0! 1! <eps>!<eps>!0.693147182
0! 1! sil! <eps>!0.693147182
1! 1! ax!A! 0.693147182
1! 2! ax!A! 0.693147182
1! 3! ey!A42128
1! 15!ey!AAW
1! 21!ae!ABERDEEN
1! 26!ax!ABOARD
1! 30!ax!ABOVE

The lexicon (pronouncing dictionary) is in binary
OpenFst format

Can view it as text using the command above.

Weighted Finite State Transducers (WFSTs)
Various resources for learning WFSTs, OpenFst

Informal intro by me to WFSTs (read slides first)

http://old-site.clsp.jhu.edu/news-events/abstract.php?sid=20110902

More formal one, search for

Paul Dixon tutorial:

For OpenFst resources/tutorial: www.openfst.org

Next slides: very quick intro.

hbka.pdf

apsipa_09_tutorial_dixon_furui.pdf

WFST quick intro: FSAs
Finite State acceptor (FSA) is a finite representation
of a possibly infinite set of strings.

Has a finite #states. One is “initial state”.
States can be labeled “final”.

Arcs between states have symbols on them (or
special symbol epsilon meaning no symbol)

String == symbol-sequence.

String accepted if there’s a path with that
symbol-sequence on, from initial->final state.

WFST quick intro: WFSAs
WFSA is like FSA but adding costs to the
transitions and final-states.

String “accepted” with weight determined by
minumum-cost path from initial->final.

The notion of cost can be generalized.

We call them “weights”. Operations + and *,
satisfying axioms of a “semiring”

A weight is “multiplied” along paths, “added”
across paths.

WFST quick intro: FSTs
Finite State transducer (FST) is (from the point of
view of its name) is an object that
“transduces” (converts) one string into another.

Like FSA but two symbols on each arc: “input” and
“output”.

Mathematically, represents a set of pairs of
strings: (input-string, output-string).

“transducer” name is a bit misleading.

Notion of “composition” (like function composition)

WFST quick intro: WFSTs
WFST combines the two-symbol idea of FSTs,
with the weighting idea of FSAs.

Keywords:

Determinization, minimization, composition

equivalent, epsilon-free, functional

on-demand algorithm

weight-pushing, epsilon removal

You might want to find out what these mean.

Data directory format

Most of these files map from utterance-id to
(something)

Kaldi “Table” concept: collection of objects indexed by
a string.

$ ls data/train ## note: it would look like this after the next step.
spk2gender spk2utt! text utt2spk wav.scp
$ head -2 data/train/wav.scp
trn_adg04_sr009 sph2pipe -f wav /foo/rm1_audio1/rm1/ind_trn/adg0_4/sr009.sph |
trn_adg04_sr049 sph2pipe -f wav /foo/rm1_audio1/rm1/ind_trn/adg0_4/sr049.sph |
$ head -2 data/train/text
trn_adg04_sr009 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE
trn_adg04_sr049 IS DIXON+S LENGTH GREATER THAN THAT OF RANGER
$ head -2 data/train/utt2spk
trn_adg04_sr009 adg0
trn_adg04_sr049 adg0

The Table concept
A Table is a collection of objects indexed by a string
(string must be nonempty, space-free).

E.g. a collection of matrices indexed by utterance-
id, representing features.

“Templates” in C++: e.g. vector<int> is a vector of
integers. Mechanism for generic code.

The basic concept is: Table<Object>, e.g. Table<int>,
Table<Matrix<float> >

Handles access to objects on disk (or pipes, etc.)

Tables: form on disk
Two ways objects are stored on disk:

“scp” (script) mechanism: .scp file specifies mapping
from key (the string) to filename or pipe:

$ head -2 data/train/wav.scp
trn_adg04_sr009 sph2pipe -f wav /foo/rm1_audio1/rm1/ind_trn/adg0_4/sr009.sph |
trn_adg04_sr049 sph2pipe -f wav /foo/rm1_audio1/rm1/ind_trn/adg0_4/sr049.sph |

$ head -2 data/train/text
trn_adg04_sr009 SHOW THE GRIDLEY+S TRACK IN BRIGHT ORANGE
trn_adg04_sr049 IS DIXON+S LENGTH GREATER THAN THAT OF RANGER

“ark” (archive) mechanism: data is all in one file,
with utterance id’s (example below is in text mode):

Specifying Tables on command line

Strings passed from command line say how to read
or write Tables.

Note: the type of object expected, and whether to
read or write, is determined by the program itself.

A string interpreted as specifying how to write a
Table, we call a “wspecifier” in code, etc.

A string that specifies how to read a Table is
called an “rspecifier”.

Examples of writing Tables

wspecifier meaning
ark:foo.ark Write to archive “foo.ark”

scp:foo.scp Write to files using mapping in foo.scp

ark:- Write archive to stdout
ark,t:|gzip -c >foo.gz Write text-form archive to foo.gz

ark,t:- Write text-form archive to stdout
ark,scp:foo.ark,foo.scp Write archive and scp file (see below)

Last one is a special case: write archive, and .scp file
specifying offsets into that archive (for efficient
random access). Here, .scp file is like an index.

Examples of reading Tables
rspecifier meaning
ark:foo.ark Read from archive foo.ark

scp:foo.scp Read as specified in foo.scp

ark:- Read archive from stdin

ark:gunzip -c foo.gz| Read archive from foo.gz

ark,s,cs:- Read archive (sorted) from stdin...

In last one, “s” asserts archive is sorted, “cs” asserts
it will be called in sorted order.

Allows memory-efficient random access on archive.

C++ level Table code
Note: there is actually no Table<Object> class.

There are three: SequentialTableReader,
RandomAccessTableReader, and TableWriter.

SequentialTableReader<Matrix<float> > mat1_reader(rspecifier1);
RandomAccessTableReader<Matrix<float> > mat2_reader(rspecifier2);
TableWrite<Matrix<float> > mat_writer(wspecifier);
for (; !mat1_reader.Done(); mat1_reader.Next()) {
 const Matrix<float> mat1(mat1_reader.Value());
 std::string key = mat1_reader.Key();
 if (mat2_reader.HasKey(key)) {
 Matrix<float> mat2(mat2_reader.Value());
 Matrix<float> prod(mat1.NumRows(), mat2.NumCols());
 prod.AddMatMat(1.0, mat1, kNoTrans, mat2, kNoTrans);
 mat_writer.Write(key, prod);
 }
}

Shell level Table example

This fake example imagines the code on the
previous slide was in a program called multiply-
matrices.

In reality, Kaldi programs are a little higher level
than this (although there is a program “transform-
feats” that does this as a special case).

$ multiply-matrices “scp:feats.scp” \
 “ark:gunzip –c transforms.gz|” \
 “ark,t:|gzip –c >transformed_feats.gz”
$

Feature processing

Speech audio processing
The most useful information in speech is frequency
domain

 e.g. position of peaks in amplitude called
“formants” that vary between vowels

We use short-time Fourier spectrum

Further process this to reduce dimension and
make it more Gaussian distributed.

gaussian distribution

Audio processing (simple version)
Input is 16kHz sampled audio.

Take a 25ms window (shift by 10 ms each time; we
will output a sequence of vectors, one every 10ms)

Multiply by windowing function e.g. Hamming

Do fourier transform

Take log energy in each frequency bin

Do discrete cosine transform (DCT): (gives us the
“cepstrum”)

Keep the first 13 coefficients of the cepstrum.

Hamming window

FFT

cepstrum

Audio processing (details)
Pre-scale the frequency axis with “mel” (perceptual)
scale before doing DCT

Don’t take DCT of individual frequency components:
average energy over triangular “bins”, equally
spaced in mel scale

“Pre-emphasize” signal (do s’(t) = s(t) -0.97 s(t-1)) ...
reduces aliasing artifacts w/ Hamming (?)

Add a little noise to signal: “dithering”--> no log(0)

Result is MFCC (Mel Frequency Cepstral Coeffs.)

Kaldi also supports “PLP” (perceptual linear
prediction)-- usually a bit better.

mel scale

Audio processing (script)

For training set and each of the test sets, make the
features with 4 CPUs (on local machine).

Puts features e.g. in data/train/feats.scp

assumes your shell is bash. Uses 4 cpus (parameter 4)
featdir=mfcc_feats ## Note: put this somewhere with disk space

for x in train test_mar87 test_oct87 test_feb89 test_oct89 \
 test_feb91 test_sep92; do
 steps/make_mfcc.sh data/$x exp/make_mfcc/$x $featdir 4
 #steps/make_plp.sh data/$x exp/make_plp/$x $featdir 4
done

head data/train/feats.scp
trn_adg04_sr009 /home/dpovey/data/kaldi_rm_feats/raw_mfcc_train.1.ark:16
trn_adg04_sr049 /home/dpovey/data/kaldi_rm_feats/raw_mfcc_train.1.ark:23395
trn_adg04_sr089 /home/dpovey/data/kaldi_rm_feats/raw_mfcc_train.1.ark:37310

Audio processing (script)
Main command run by steps/make_mfcc.sh:

$ head -1 exp/make_mfcc/train/make_mfcc.1.log
compute-mfcc-feats --verbose=2 --config=conf/mfcc.conf \
 scp:exp/make_mfcc/train/wav1.scp \
 ark,scp:/data/mfcc/raw_mfcc_train.1.ark,/data/mfcc/raw_mfcc_train.1.scp

First argument “scp:...” tells it to find filenames
(actually commands) in [dir]/wav1.scp

Second argument “ark,scp:...” tells it to write an
archive, and an index into the archive.

Archive contains (num-frames)x13 matrix of
features, for each utterance.

Audio processing (code)
simplified extract from src/featbin/compute-mfcc-feats.cc

main(int argc, char *argv[]) {
 // <snip>: parse command line arguments.
 Mfcc mfcc(mfcc_opts);

 SequentialTableReader<WaveHolder> reader(wav_rspecifier);
 BaseFloatMatrixWriter writer(feat_wspecifier); // note: a typedef.
 for (; !reader.Done(); reader.Next()) {
 string utt = reader.Key();
 const WaveData &wave_data = reader.Value();
 int32 channel = 0; # Let’s assume mono data for now.
 BaseFloat vtln_warp = 1.0; # Gloss over VTLN (vocal tract len. norm.)
 SubVector<BaseFloat> waveform(wave_data.Data(), this_chan);
 Matrix<BaseFloat> features;
 mfcc.Compute(waveform, vtln_warp, &features, NULL);
 writer.Write(utt, features);
 }
}

Note on Tables
We said Table types were templated on the type
they store, e.g. TableWriter<Matrix<float> >

This is a simplification: we actually template on a
“Holder” type that tells the Table code how to read
and write the object.

Necessary because objects don’t have uniform read/
write methods. (must work for fundamental types)

Audio processing (code)
simplified extract from src/feat/feature-mfcc.cc
void Mfcc::Compute(const VectorBase<BaseFloat> &wave,
 Matrix<BaseFloat> *output) {
 int32 rows_out = NumFrames(wave.Dim(), opts_.frame_opts),
 cols_out = opts_.num_ceps;
 output->Resize(rows_out, cols_out);
 Vector<BaseFloat> window; // windowed waveform.
 Vector<BaseFloat> mel_energies; // energies for mel bins.
 for (int32 r = 0; r < rows_out; r++) { // r is frame index..
 ExtractWindow(wave, r, opts_.frame_opts,
 feature_window_function_, &window);
 srfft_->Compute(window.Data(), true); // split-radix FFT
 ComputePowerSpectrum(&window);
 SubVector<BaseFloat> power_spectrum(window, 0, window.Dim()/2 + 1);
 mel_banks_.Compute(power_spectrum, &mel_energies);
 mel_energies.ApplyLog(); // take the log.
 SubVector<BaseFloat> this_mfcc(output->Row(r));
 // this_mfcc = dct_matrix_ * mel_energies [which now have log]
 this_mfcc.AddMatVec(1.0, dct_matrix_, kNoTrans, mel_energies, 0.0);
 }
}

End of this
lecture

