INTERSPEECH 2020
October 25-29, 2020, Shanghai, China

Wake Word Detection with Alignment-Free Lattice-Free MMI

Yiming Wang', Hang Lv*', Daniel Povey3, Lei Xie®, Sanjeev Khua’anpurl’4

'Center for Language and Speech Processing, Johns Hopkins University, Baltimore, USA
*ASLP@NPU, School of Computer Science, Northwestern Polytechnical University, Xi’an, China
IXjaomi Corporation, Beijing, China
*Human Language Technology Center of Excellence, Johns Hopkins University, Baltimore, USA

{yiming.wang, khudanpur}@jhu.edu, {hanglv,lxie}@nwpu-aslp.org, dpovey@gmail.com

Abstract

Always-on spoken language interfaces, e.g. personal digital as-
sistants, rely on a wake word to start processing spoken input.
We present novel methods to train a hybrid DNN/HMM wake
word detection system from partially labeled training data, and
to use it in on-line applications: (i) we remove the prerequisite
of frame-level alignments in the LF-MMI training algorithm,
permitting the use of un-transcribed training examples that are
annotated only for the presence/absence of the wake word; (ii)
we show that the classical keyword/filler model must be sup-
plemented with an explicit non-speech (silence) model for good
performance; (iii) we present an FST-based decoder to perform
online detection. We evaluate our methods on two real data
sets, showing 50%—-90% reduction in false rejection rates at pre-
specified false alarm rates over the best previously published
figures, and re-validate them on a third (large) data set.

Index Terms: wake word detection, lattice-free MMI, align-
ment free

1. Introduction

Wake word detection is the task of detecting a predefined key-
word from a continuous stream of audio. It has become an
important component in today’s voice-controlled digital assis-
tants and smart phones. Voice-controlled devices, with wake
word detection system running in the background, require a
low power solution. When people wish to to interact with such
devices by voice, they wake up the device by saying a prede-
fined word like “Alexa” for Amazon Echo or “Okay Google”
for Google Home. If the word is identified and accepted, the
device turns on, i.e. goes into a state with higher power con-
sumption to recognize and understand more complex spoken
instructions [1].

HMM-based keyword-filler models are used to represent
both the keyword and filler (background) models [2, 3, 4]. The
keyword model consists of all valid phone sequences from the
keyword, and the filler model includes all other speech and non-
speech. During the decoding phase, usually the ratio of the
scores with keyword graph and to the filler graph is computed
for determining the presence of the wake word. With recent
advances in deep learning, HMM-DNN hybrid wake word sys-
tems replace GMM-based acoustic models with a neural net-
work to classify individual frames [5, 6, 7]. While the filler
model for background speech is specified as an ergodic topol-
ogy between speech and non-speech in [5, 6], it is represented

This work was partially supported by unrestricted gifts from Mob-
voi Information Technology Company Limited, and Applications Tech-
nology (AppTek). The authors thank Hainan Xu and Tongfei Chen for
valuable comments.

Copyright © 2020 ISCA

4258

as an all-phones loop in [7], increasing both the neural network
model size and decoding graph size due to the increased number
of modeling units. Finally, some methods add automatic speech
recognition (ASR) as an auxiliary task during training.

Pure neural models abandon HMMs and completely rely
on neural networks for acoustic modeling, where the subwords
or even the whole word of the wake word phrase (wake phrase,
for short) is directly used as modeling units. The first successful
wake word detection systems of this type are proposed in [8,
9]. They use individual words in the wake phrase as modeling
units to reduce the network size. However, they still need a
forced alignment obtained from an existing HMM-based ASR
system, to obtain training labels, which limits their applications
if an ASR system is unavailable. For decoding, they adopt a
fast posterior handling approach where the posterior of words is
smoothed within a sliding window over the audio frames. [10,
11] use the whole wake phrase as the training target, but it still
needs phone-level alignments to pretrain a small network being
part of a larger one. There are also several proposals that do
not require frame-level alignment for training, including max-
pooling [12, 13], the attention mechanism [14, 15], and global
mean-pooling [16].

It has been shown that a sequence-level training criteria
perform better than frame-level criteria for ASR. The output in
a wake word detection task, by contrast, is relatively simple.
However, if the modeling units are subwords (e.g., phonemes
or HMM states), wake word detection may still be considered
as a sequence prediction task. Sequence-level discriminative
training such as CTC loss [17] has been explored for the wake
word detection task with graphemes or phonemes as subword
units [18, 19, 20, 21]. Lattice-free maximum mutual informa-
tion (LF-MMI) is an HMM-based sequence-level loss first pro-
posed in [22] for ASR. In the context of wake word detection, it
is recently investigated in [23], where it still requires alignments
from a prior model like an HMM-GMM system to generate nu-
merator graphs.

In this paper we propose a wake word detection system
with alignment-free LF-MMI as training criterion, while not
requiring any forced alignments for training.! Alignment-free
LF-MMI was initially proposed for ASR [25]. In order to
make it work for our task, we made several necessary adapta-
tions/changes to the lexicon, HMM topology, data preprocess-
ing for both efficiency and performance reasons. A fast online
decoder is also proposed for our task. The experiments on three
real wake word data sets all show its superior performance com-
pared to other systems recently reported on the same data sets.

IThe code and recipes are available in Kaldi [24]: https:
//github.com/kaldi-asr/kaldi/tree/master/egs/
{snips, mobvoi, mobvoihotwords}.

http://dx.doi.org/10.21437/Interspeech.2020-1811

2. The Proposed System

2.1. HMM Topology

Different from other traditional HMM-based keyword-filler
models (e.g., those proposed in [5, 6, 7, 23] where each
phoneme of the whole wake phrase corresponds to an HMM
or HMM state, we propose to model the whole wake phrase (in
positive recordings) with a single HMM (referred to as word
HMM), and the number of distinct states within that HMM is
a predefined value which is not necessarily proportional to the
number of phonemes in its pronunciation. We argue that using
a fixed number of HMM states, which is usually less than the
number of the actual phonemes, has enough modeling power
for the wake word task. Similarly, we use another HMM of
the same topology (referred to as freetext HMM) to model all
non-silence speech (in negative recordings). From our prelimi-
nary experiments we also found that having an additional HMM
dedicated to non-speech sounds, denoted SIL and called the “si-
lence” phone, is crucial for good performance. The SIL phone
is added as optional silence [26] to the beginning and end of
each positive/negative recording so that it can learn the actual
silence properly. The resulting topologies are shown in Fig. 1.

H--6-6-0
Figure 1: The HMM topologies used for the wake word and
freetext (top), and SIL (bottom). The number of emitting HMM
states is 4 and 1, respectively. The final states are non-emitting.

2.2. Alignment-Free Lattice-Free MMI

Lattice-free MMI (LF-MMI) loss [22] is a sequence-level crite-
rion and can be formulated as:

N N
Fieaw = »_log P(Ln|On) =) log
n=1

n=1

P(O,|Ln)P(Ly)
22 P(On|L)P(L)

where L,, and L are the subword truth sequence and a compet-
ing hypothesis sequence respectively, and O,, is the input audio.
In the regular LF-MMI the numerator graph used to compute the
truth sequence is an acyclic graph generated from an existing
GMM model. In alignment-free LE-MMI [25], the numerator
graph is an unexpanded FST directly generated from training
transcripts, giving more freedom to learn the alignments during
the forward-backward pass in training.

For ASR, the competing hypotheses in the denominator
graph are constructed from a phone LM trained from the train-
ing transcripts. On the contrary, for our wake word detection
task, we manually specify the topology of the phone LM FST
as in Fig. 2. One path containing the word HMM corresponds
to positive recordings®, and the other two correspond to nega-
tive recordings (other speech/non-speech and silence). We as-
sign final weights in a way such that they reflect the ratio of the
number of positive/negative examples in the training set.

2.3. Acoustic Modeling

Owing to efficiency and latency concerns specific to our task,
the family of recurrent [27, 28] or self-attention-based [29] neu-
ral networks is not within our consideration. Instead, we use

2If we have more than one wake word as those in our Mobvoi
(SLR87) data set, each wake word would correspond to one such path.

4259

SIL

Figure 2: Topology of the phone language model FST for the
denominator graph. Labels on arcs represent phones.

factorized TDNN (TDNN-F) with skip connections [30] for
acoustic modeling. In a TDNN-F layer, the number of parame-
ters is reduced by factorizing the weight matrix in TDNN layers
[31] into the product of two low-rank matrices, the first of which
is constrained to be semi-orthogonal.

As in other architectures like ResNet [32], we incorporate
skip connections: each TDNN-F layer receives its immediate
prior layer’s output as the skip connection, which is added to
the input of the current layer after being scaled down by 0.66.

We use a narrow (hidden dimension is 80) but deep (20 lay-
ers) network with each output frame covering a receptive field
of size 80. The output is evaluated every 3 frames for LF-MMI
loss to reduce the the computation cost both in training and test
time. We also find a cross-entropy regularization together with
the main LF-MMI loss helpful. As a result, the total number of
parameters is about 150k, with the number of targets being only
18 using the HMM topologies described in Sec. 2.1.

2.4. Data Preprocessing and Augmentation

Compared with the positive recordings, the negative recordings
usually have a longer duration and have more variability as
they can include all possible speech except the wake phrase.
However we only use a single freetext HMM for it, making
it difficult for the model to learn smoothly if batching them
with positives directly (see Sec. 3.2). To tackle this problem,
we chunk the negative recordings into shorter chunks of ran-
dom lengths drawn from the empirical length distribution of the
positive recordings, disregarding word boundaries. Successive
chunks overlap by 0.3s, giving a trailing word-fragment from
one chunk a chance to appear as a whole-word in the next. All
chunks are assigned a negative label.

Although all our training data is recorded in real environ-
ments with background noise, we still found that data augmen-
tation is helpful. Therefore we apply the same type of data
augmentation techniques as used in [33], making use of noise,
music, background speech from the MUSAN corpus [34], sim-
ulated reverberation [35] and speed perturbation [36]. This ef-
fectively increases the amount of training data 7 times.

2.5. Decoding

We next describe online Viterbi decoding without lattice gener-
ation for wake word detection, using the term “tokens” to denote
partial hypotheses [37].

First we construct our decoding graph with a word-level
FST specifying the prior probabilities of all possible word paths,
in a similar way as we specify the phone language model FST
in Fig. 2, except that the start state and final states are merged
to form a loop. The loop allows decoding with an audio inter-
leaving with wake words and other possible speech.

During online decoding, every time after processing a fixed-
length chunk from a recording, we backtrack along the frames
delimited by two most recent “immortal tokens” by calling the
routine UPDATEIMMORTALTOKEN in Algorithm 1, checking if
there is a wake word detected from this partial backtracking. If

Algorithm 1 Update the Immortal Token for Backtracking

Input: activeTokList
Output: immortalTok

> represents all current hypotheses
> is global, storing the latest one

1: procedure UPDATEIMMORTALTOKEN((activeTokList)
2 emitting < ()
3 for tok in activeTokList do
4: while isNonEmittingToken(tok) do tok <— tok.prev
5: if tok # NULL then emitting.insert(tok)
6 tokenOne <— NULL
7 while True do
8: if |emitting| = 1 then
9: tokenOne <— emitting[0]; break
10: if emitting = () then break
11: prevEmitting < ()
12: for tok in emitting do
13: prevTok < tok.prev
14: while isNonEmittingToken(tok) do
15: prevTok < tok.prev
16: if prevTok = NULL then continue
17: prevEmitting.insert(prevTok)
18: emitting <— prevEmitting
19: if tokenOne # NULL then
20: immortalTok < tokenOne

a wake word is found, we just stop decoding and trigger the sys-
tem; otherwise continue the decoding process. The “immortal
token” is the common ancestor (prefix) of all active tokens, i.e.
it will not “die” no matter which active token eventually sur-
vives. Line 3-5 obtain the last emitting token from each active
token. Line 7-18 are trying to find the common ancestor of all
active tokens. Line 19-20 update the immortal token if a newer
one is found; otherwise keep the old one from the previous de-
coding step.

The intuition is that, if all currently active partial hypothe-
ses are from the same token at a previous time-step, all hypothe-
ses before that token had already collapsed to one hypothesis
(due to beam search pruning and token recombination), from
which we would check whether it contains the wake word in a
chunk-by-chunk fashion.

3. Experiments

3.1. Data Sets

There are three real wake word data sets to be evaluated: SNIPS
data set® [11] with the wake word “Hey Snips”, Mobvoi single
wake word data set* [15] with the wake word “Hi Xiaowen”,
and Mobvoi (SLR87) data set’ [38] with two wake words “Hi
Xiaowen” and “Nihao Wenwen”. The statistics for each data set
are summarized in Table 1. We will use the first two data sets to
demonstrate the effects of several design choices in our system,
and give the final results on all these three data sets when com-
paring our system with others. If not otherwise specified, we
show our experimental results in an incremental way, meaning
that later experiments would be conducted on top of the one that
is better from the previous experiment. The operating points in
DET curves are obtained by varying the cost corresponding to
the positive path in the decoding graph while keeping the cost

3https://github.com/snipsco/
keyword-spotting-research-datasets

4This data set is not publicly available.

Shttps://www.openslr.org/87

4260

corresponding to negative path at 0. 40-dimensional MFCC fea-
tures are extracted in all the experiments.

Table 1: Statistics for the three wake word data sets.

Train Dev Eval

Name

#Hrs #Utts (#Positive) ~ #Hrs #Utts (#Positive) #Hrs #Utts (#Positive)
SNIPS 54 50,658 (5,799) 24 22,663 (2,484) 25 23,072 (2,529)
Mobvoi 67 74,134 (19,684) 7 7,849 (2,343) 7 7,841 (1,942)
Mobvoi (SLR87) 144 174,592 (43,625°) 44 38,530 (7.357) 74 73,459 (21,282)

3.2. Effect of Negative Recordings Sub-segmentation

We first show the effect of sub-segmenting negative recordings
on training. We start from the training data with only speed-
perturbation applied. To keep consistent with the numbers re-
ported in others’ work on the same data sets, false rejection rate
(FRR) is reported in Table 2 at 0.5 false alarms per hour (FAH)
on the SNIPS data set, and at 1.5 FAH for Mobvoi. Appar-
ently without sub-segmentation the performance is far from sat-
isfactory, indicating the alignments learned with the LF-MMI
system is poor. We also inspected the training/validation loss
in both cases (not shown here), and found that there is severe
overfitting when training without sub-segmentation.

Table 2: Effect of sub-segmentation of negative recordings.

FRR(%) SNIPS (FAH=0.5) Mobvoi (FAH=1.5)
w/o sub-segmentation 67 47
w/ sub-segmentation 0.6 5.6

3.3. Effect of Data Augmentation

We augment the training data using the MUSAN corpus in the
following way: we randomly apply additive noise from the
“babble”, “music” and “noise” data sets separately on each copy
of the original training data once. For each training example,
“babble” is added as background noises 3 to 7 times with SNRs
ranging from 13 to 20; “music” is added as background noises
once with SNRs ranging from 5 to 15; “noise” is added as fore-
ground noises at the interval of 1 second with SNRs ranging
from O to 15. Then reverberation is also separately applied to
the training data using the simulated RIRs with room sizes uni-
formly sampled from 1 meter to 30 meters. The above proce-
dure increase the training data by a factor of 4. We then apply 3
way speed-perturbation on top of the original training set. The
augmentation strategy together results in about 7x more train-
ing data. The results before and after augmentation are shown
in Table 3. It can be seen the augmentation strategy is highly
effective, where FRR with SNIPS is even 0 at FAH=0.5.

Table 3: Effect of data augmentation.

FRR(%) SNIPS (FAH=0.5) Mobvoi (FAH=1.5)
w/o data augmentation 0.6 5.6
w/ data augmentation 0 04

3.4. Effect of Alignment-Free LF-MMI Loss

To compare our proposed alignment-free LF-MMI loss with
regular LF-MMI and conventional cross-entropy loss for our
task, we train a phoneme-based HMM-GMM system to gen-
erate the numerator lattice (for regular LF-MMI loss) or the
forced alignments (for conventional cross-entropy loss) for the
same sub-segmented and augmented training data. the network

6 The statistics include two wake words.

architectures are the same as what is used for alignment-free
LE-MMI training except the final layer (depending on the loss
being used). The results in Table 4 validate that LF-MMI loss is
generally advantageous to the frame-level cross-entropy loss in
the wake word detection task, and alignment-free LF-MMI loss
achieves better performance than regular LF-MMI on SNIPS
and Mobvoi (SLR87), but worse on Mobvoi. It is worth noting
that we believe SNIPS and Mobvoi (SLR87) results are more in-
dicative of performance, as after manually listening to the false
alarms in Mobvoi at this specific operating point, we found that
all the false alarms (9 in total) are actually intentionally pro-
nounced with a different tone on the last character “wen”, which
is extremely difficult for the model to learn given the limited
amount of data; some would even argue that those examples
should be labeled as positive cases in order for the model to
accommodate Chinese speakers with accents. The better per-
formance of the system with alignment-free LF-MMI loss is
possibly due to the capability of learning flexible alignments
than GMM models.

Table 4: Effect of alignment-free LF-MMI loss.

SNIPS (FAH=0.5) Mobvoi (FAH=1.5) Mobvoi (SLR87) (FAH=0.5)

Hi Xiaowen

N/A
0.6
0.4

FRR(%)
Nihao Wenwen
N/A

0.7
0.5

cross-entropy 0.6
regular LF-MMI 0.1
alignment-free LF-MMI 0

35
0.2
0.4

3.5. Regular LF-MMI Refinement

The experiment from the previous section motivates us to do an
additional experiment investigating how the regular LF-MMI
performs when it gets alignments from the alignment-free LF-
MMI system instead of from a GMM model, and whether
the regular LF-MMI training could further improve the perfor-
mance as a refinement of our existing system. To this end, we
compare the three systems in Table 5. Note that as we already
achieve FRR=0 at FAH=0.5 with SNIPS using our alignment-
free LF-MMI system, we set the operating point at a smaller
FAH (0.04) for it. Table 5 demonstrates that further improve-
ment can be obtained by running an additional regular LF-MMI
training on top of alignment-free LF-MMI, suggesting an op-
tional refinement stage for better performance.

Table 5: Effect of using alignments from Alignment-free LF-
MMI for regular LF-MMI.

FRR(%) SNIPS (FAH=0.04) Mobvoi (FAH=1.5)

regular LF-MMI 0.2 0.2

alignment-free LF-MMI 0.2 0.4
+regular LF-MMI refinement 0.1 0.3

3.6. Comparison with Other Baseline Systems

We compare our proposed system with other systems recently
proposed on the same data sets. We use our alignment-free LF-
MMI system without refinement as the refinement is optional.
The results are shown in Table 6. DET curves of our system on
all the three data sets are plotted in Fig. 3.

For SNIPS data set we compare against their original paper
[11], where a voice activity detection system is used to obtain
frame-level wake word labels for training. While their system
is already very good in term of FRR, our system even achieves
FRR=0 at FAH=0.5.

For Mobvoi data set we compare our system with [15]
where an attention mechanism is adopted for pooling across
frames to make a prediction. They also propose an adversarial

4261

examples generation algorithm for robust training. The mod-
eling units are wake words, and they use recurrent rather than
convolutional networks. Our system achieves significant bet-
ter results, improving FRR by around 90% relative compared to
their number at FAH=1.5.

For Mobvoi (SLR87) data set, The approach proposed in
[13] are compared, where the label imbalance issue is tackled
by selective negative sampling. Again, it uses wake words as
modeling units. Note that this data set contains two wake words
(“Hi Xiaowen” and “Nihao Wenwen”), and when we are evalu-
ating for a specific one, the other one is considered as negative.
We achieve 50-70% reduction in FRR than the baseline with the
same FAH=0.5.

Table 6: Comparison with other wake-word detection baselines.

SNIPS #Params FRR(%) at FAH=0.5
Coucke at al. [11] 220k 0.12
alignment-free LF-MMI (Ours) 150k 0
Mobvoi #Params FRR(%) at FAH=1.5
Wang at al. [15] 84k ~3.6
alignment-free LF-MMI (Ours) 150k 0.4
Mobvoi (SLRS7) #Params FRR(%) at FAH=0.5
Hi Xiaowen Nihao Wenwen
Hou at al. [13]’ N/A 1.3 1.0
alignment-free LF-MMI (Ours) 150k 0.4 0.5
= = SNIPS
1.6 1 = = Mobvoi
!I == = Mobvoi (SLR87) 'Hi Xiaowen'
1.4 \ == = Mobvoi (SLR87) 'Nihao Wenwen'
2121 ||
j
= \
104\
S \
% 0.8 \
Q
@
8 0.6 1 N\
< N
© N~ -
lLOA'h R ~~~~~——______._—.1-..-..__,..
\ [L T S
024V e e e
|
0.0 — - - . . .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

False Alarms per hour

Figure 3: DET curves for the three data sets.

4. Conclusions and Future Work

We describe a suite of methods to build a hybrid HMM-
DNN system for wake word detection, including sequence-
discriminative training based on alignment-free LF-MMI loss,
removing the need for frame-level training alignments, and
whole-word HMMs for the wake word and filler speech, remov-
ing the need for training transcripts or pronunciation lexicons.
These features significantly reduce model sizes and greatly sim-
plify the training process. An online decoder tailored to wake
word detection is proposed to complete the suite. The sys-
tem widely outperforms other wake word detection systems on
three different real-world wake word data sets. We have open-
sourced our system in Kaldi, and to make it accessible to other
deep learning frameworks, we are implementing a PyTorch-
based version based on ESPRESSO [39] and PYCHAIN [40].

7 The numbers shown here, different from those in the original
paper, are obtained at https://github.com/jingyonghou/
KWS_Max-pooling_RHE on the same data as what we are using.

[1]

[2]

[4]

[5]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

5. References

Y. Wang, X. Fan, I. Chen, Y. Liu, T. Chen, and B. Hoffmeis-
ter, “End-to-end anchored speech recognition,” in Proc. ICASSP,
2019, pp. 7090-7094.

J. R. Rohlicek, W. Russell, S. Roukos, and H. Gish, “Continuous
hidden markov modeling for speaker-independent word spotting,”
in Proc. ICASSP, 1989, pp. 627-630 vol.1.

R. C. Rose and D. B. Paul, “A hidden markov model based key-
word recognition system,” in Proc. ICASSP, 1990, pp. 129-132
vol.1.

I. Szoke, P. Schwarz, P. Matejka, L. Burget, M. Karafiat, and
J. Cernocky, “Phoneme based acoustics keyword spotting in in-
formal continuous speech,” in Proc. Text, Speech and Dialogue,
8th International Conference, 2005, pp. 302-309.

S. Panchapagesan, M. Sun, A. Khare, S. Matsoukas, A. Man-
dal, B. Hoffmeister, and S. Vitaladevuni, “Multi-task learning and
weighted cross-entropy for dnn-based keyword spotting,” in Proc.
INTERSPEECH, 2016, pp. 760-764.

M. Sun, D. Snyder, Y. Gao, V. K. Nagaraja, M. Rodehorst, S. Pan-
chapagesan, N. Strom, S. Matsoukas, and S. Vitaladevuni, “Com-
pressed time delay neural network for small-footprint keyword
spotting,” in Proc. INTERSPEECH, F. Lacerda, Ed., 2017, pp.
3607-3611.

M. Wu, S. Panchapagesan, M. Sun, J. Gu, R. Thomas, S. N. P. Vi-
taladevuni, B. Hoffmeister, and A. Mandal, “Monophone-based
background modeling for two-stage on-device wake word detec-
tion,” in Proc. ICASSP, 2018, pp. 5494-5498.

G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in Proc. [CASSP, 2014, pp.
4087-4091.

T. N. Sainath and C. Parada, “Convolutional neural networks
for small-footprint keyword spotting,” in Proc. INTERSPEECH,
2015, pp. 1478-14382.

S. Myer and V. S. Tomar, “Efficient keyword spotting using
time delay neural networks,” in Proc. INTERSPEECH, 2018, pp.
1264-1268.

A. Coucke, M. Chlieh, T. Gisselbrecht, D. Leroy, M. Poumeyrol,
and T. Lavril, “Efficient keyword spotting using dilated convolu-
tions and gating,” in Proc. ICASSP, 2019, pp. 6351-6355.

M. Sun, A. Raju, G. Tucker, S. Panchapagesan, G. Fu, A. Mandal,
S. Matsoukas, N. Strom, and S. Vitaladevuni, “Max-pooling loss
training of long short-term memory networks for small-footprint
keyword spotting,” in Proc. SLT, 2016, pp. 474-480.

J. Hou, Y. Shi, M. Ostendorf, M.-Y. Hwang, and L. Xie, “Mining
effective negative training samples for keyword spotting,” in Proc.
ICASSP, 2020, pp. 7444-7448.

C. Shan, J. Zhang, Y. Wang, and L. Xie, “Attention-based end-
to-end models for small-footprint keyword spotting,” in Proc. IN-
TERSPEECH, 2018, pp. 2037-2041.

X. Wang, S. Sun, C. Shan, J. Hou, L. Xie, S. Li, and X. Lei,
“Adversarial examples for improving end-to-end attention-based
small-footprint keyword spotting,” in Proc. ICASSP, 2019, pp.
6366—-6370.

Y. Bai, J. Yi, J. Tao, Z. Wen, Z. Tian, C. Zhao, and C. Fan, “A
Time Delay Neural Network with Shared Weight Self-Attention
for Small-Footprint Keyword Spotting,” in Proc. INTERSPEECH,
2019, pp. 2190-2194.

A. Graves, S. Fernandez, F. J. Gomez, and J. Schmidhuber,
“Connectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. ICML, vol.
148, 2006, pp. 369-376.

S. Ferndndez, A. Graves, and J. Schmidhuber, “An application of
recurrent neural networks to discriminative keyword spotting,” in
Proc. ICANN, 2007, pp. 220-229.

C. T. Lengerich and A. Y. Hannun, “An end-to-end architecture
for keyword spotting and voice activity detection,” CoRR, vol.
abs/1611.09405, 2016.

4262

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Z. Wang, X. Li, and J. Zhou, “Small-footprint keyword spotting
using deep neural network and connectionist temporal classifier,”
CoRR, vol. abs/1709.03665, 2017.

Y. Zhuang, X. Chang, Y. Qian, and K. Yu, “Unrestricted vo-
cabulary keyword spotting using LSTM-CTC,” in Proc. INTER-
SPEECH, 2016, pp. 938-942.

D. Povey, V. Peddinti, D. Galvez, P. Ghahremani, V. Manohar,
X. Na, Y. Wang, and S. Khudanpur, “Purely sequence-trained neu-
ral networks for asr based on lattice-free mmi,” in Proc. INTER-
SPEECH, 2016, pp. 2751-2755.

Z. Chen, Y. Qian, and K. Yu, “Sequence discriminative training
for deep learning based acoustic keyword spotting,” Speech Com-
munication, vol. 102, pp. 100-111, 2018.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in Proc. ASRU, 2011.

H. Hadian, H. Sameti, D. Povey, and S. Khudanpur, “End-to-
end speech recognition using lattice-free MML,” in Proc. INTER-
SPEECH, 2018, pp. 12-16.

G. Chen, H. Xu, M. Wu, D. Povey, and S. Khudanpur, “Pronunci-
ation and silence probability modeling for ASR,” in Proc. INTER-
SPEECH, 2015, pp. 533-537.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. van Merrienboer, C. Giilgehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase rep-
resentations using RNN encoder-decoder for statistical machine
translation,” in EMNLP, 2014, pp. 1724-1734.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,”
in Proc. NeurIPS, 2017, pp. 5998-6008.

D. Povey, G. Cheng, Y. Wang, K. Li, H. Xu, M. Yarmohammadi,
and S. Khudanpur, “Semi-orthogonal low-rank matrix factoriza-
tion for deep neural networks,” in Proc. INTERSPEECH, 2018,
pp. 3743-3747.

V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural
network architecture for efficient modeling of long temporal con-
texts,” in Proc. INTERSPEECH, 2015, pp. 3214-3218.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. ICCV, 2016, pp. 770-778.

Y. Wang, D. Snyder, H. Xu, V. Manohar, P. S. Nidadavolu,
D. Povey, and S. Khudanpur, “The JHU ASR System for VOiCES
from a Distance Challenge 2019,” in Proc. INTERSPEECH, 2019,
pp. 2488-2492.

D. Snyder, G. Chen, and D. Povey, “MUSAN: A music, speech,
and noise corpus,” CoRR, vol. abs/1510.08484, 2015.

T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur,
“A study on data augmentation of reverberant speech for robust
speech recognition,” in Proc. ICASSP, 2017, pp. 5220-5224.

T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Proc. INTERSPEECH, 2015, pp.
3586-3589.

J. J. Odell, V. Valtchev, P. C. Woodland, and S. J. Young, “A one
pass decoder design for large vocabulary recognition,” in Proc.
Human Language Technology Workshop, 1994, pp. 405-410.

J. Hou, Y. Shi, M. Ostendorf, M. Hwang, and L. Xie, “Region
proposal network based small-footprint keyword spotting,” IEEE
Signal Process. Lett., vol. 26, no. 10, pp. 1471-1475, 2019.

Y. Wang, T. Chen, H. Xu, S. Ding, H. Lv, Y. Shao, N. Peng, L. Xie,
S. Watanabe, and S. Khudanpur, “Espresso: A fast end-to-end
neural speech recognition toolkit,” in Proc. ASRU, 2019, pp. 136—
143.

Y. Shao, Y. Wang, D. Povey, and S. Khudanpur, “PyChain: A
fully parallized PyTorch implementation of LE-MMI for end-to-
end ASR,” To appear in Proc. INTERSPEECH, 2020.

